Next: Concept Index, Previous: Copyright, Up: Top [Contents][Index]
P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, C. Wieners: UG – A flexible software toolbox for solving partial differential equations. Comput. Visual. Sci 1, 1997, 27-40.
J. Bey: Simplicial grid refinement: On Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85, 2000, pp. 1-29.
deal.II Homepage. http://www.dealii.org.
J. J. Dongarra: Performance of various computers using standard linear equations software. Technical report, Computer Science Department, University of Tennessee, 1998.
Data Explorer Homepage. http://www.ibm.com/opendx.
J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu: A Supernodal Approach to Sparse Partial Pivoting, SIAM J. Matrix Anal. Appl. 20, 1999, pp. 720-755.
R. Fateman: Software fault prevention by language choice: why C is not my favorite language. http://www.cs.berkeley.edu/~fateman/papers/software.pdf.
R. Fateman, K. A. Broughan, D. K. Willcock, and D. Rettig: Fast floating-point processing with Common Lisp. ACM Trans. on Math. Software, 21:26–62, 1995.
Femlisp Homepage. http://www.femlisp.org.
P. Graham: On Lisp. Prentice Hall, 1993.
P. Graham: ANSI Common Lisp. Prentice Hall, 1996.
M. Heisig, N. Neuss: Making a Common Lisp Finite Element library high-performing - a case study (submitted).
S. E. Keene: Object-Oriented Programming in Common Lisp: A Programmer’s Guide to CLOS. Addison-Wesley, 1989.
G. Kiczales, J. Des Rivieres, and D. Bobrow: The Art of the Metaobject Protocol. MIT Press, 1991.
Matlisp Homepage. http://matlisp.sourceforge.net.
N. Neuss: On using Common Lisp in scientific computing. In Proceedings of the CISC 2002. Springer-Verlag, 2002.
P. Norvig Principles of Artificial Intelligence Programming. Morgan Kaufmann Publishers, Inc., San Francisco, USA, 1992.
Quicklisp Homepage. http://www.quicklisp.org.
U. Ruede Mathematical and Computational Techniques for Multilevel Adaptive Methods. Frontiers in Applied Mathematics 13, SIAM, Philadelphia, 1993.
J. W. Ruge and K. Stueben: Algebraic multigrid (AMG). In S. F. McCormick, editor, Multigrid Methods, volume 3 of Frontiers in Applied Mathematics, pages 73–130. SIAM, Philadelphia, PA, 1987.
SBCL Homepage. http://www.sbcl.org.
P. Seibel: Practical Common Lisp. Apress, 2005. Available online at http://www.gigamonkeys.com/book.
J. R. Shewchuk: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In Ming C. Lin Dinesh Manocha (eds): Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science 1148, Springer-Verlag, 1997, pp. 203-222.
K. Stueben: A review of algebraic multigrid. J. Comput. Appl. Math., 128:281–309, 2001.
A. H. Stroud: Approximate Calculation of Multiple Integrals. Prentice Hall, 1971.
Hang Si: TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator. See http://wias-berlin.de/software/tetgen/.
Next: Concept Index, Previous: Copyright, Up: Top [Contents][Index]