Next: , Previous: , Up: Top   [Contents][Index]


(Bastian et al, 1997)

P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, C. Wieners: UG – A flexible software toolbox for solving partial differential equations. Comput. Visual. Sci 1, 1997, 27-40.

(Bey 2000)

J. Bey: Simplicial grid refinement: On Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85, 2000, pp. 1-29.

(CMUCL) CMUCL Homepage.

deal.II Homepage.

(Dongarra 1998)

J. J. Dongarra: Performance of various computers using standard linear equations software. Technical report, Computer Science Department, University of Tennessee, 1998.

(Data Explorer)

Data Explorer Homepage.

(Demmel et al, 1999)

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu: A Supernodal Approach to Sparse Partial Pivoting, SIAM J. Matrix Anal. Appl. 20, 1999, pp. 720-755.


R. Fateman: Software fault prevention by language choice: why C is not my favorite language.

(Fateman et al, 1995)

R. Fateman, K. A. Broughan, D. K. Willcock, and D. Rettig: Fast floating-point processing with Common Lisp. ACM Trans. on Math. Software, 21:26–62, 1995.


Femlisp Homepage.

(Graham 1993)

P. Graham: On Lisp. Prentice Hall, 1993.

(Graham 1996)

P. Graham: ANSI Common Lisp. Prentice Hall, 1996.

(Heisig-Neuss 2017)

M. Heisig, N. Neuss: Making a Common Lisp Finite Element library high-performing - a case study (submitted).

(Keene 1989)

S. E. Keene: Object-Oriented Programming in Common Lisp: A Programmer’s Guide to CLOS. Addison-Wesley, 1989.

(Kiczales et al, 1991)

G. Kiczales, J. Des Rivieres, and D. Bobrow: The Art of the Metaobject Protocol. MIT Press, 1991.


Matlisp Homepage.

(Neuss 2002)

N. Neuss: On using Common Lisp in scientific computing. In Proceedings of the CISC 2002. Springer-Verlag, 2002.

(Norvig 1992)

P. Norvig Principles of Artificial Intelligence Programming. Morgan Kaufmann Publishers, Inc., San Francisco, USA, 1992.


Quicklisp Homepage.

(Ruede 1993)

U. Ruede Mathematical and Computational Techniques for Multilevel Adaptive Methods. Frontiers in Applied Mathematics 13, SIAM, Philadelphia, 1993.

(Ruge and Stueben, 1987)

J. W. Ruge and K. Stueben: Algebraic multigrid (AMG). In S. F. McCormick, editor, Multigrid Methods, volume 3 of Frontiers in Applied Mathematics, pages 73–130. SIAM, Philadelphia, PA, 1987.


SBCL Homepage.

(Seibel 2005)

P. Seibel: Practical Common Lisp. Apress, 2005. Available online at

(Shewchuk 1997)

J. R. Shewchuk: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In Ming C. Lin Dinesh Manocha (eds): Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science 1148, Springer-Verlag, 1997, pp. 203-222.

(Stueben 2001)

K. Stueben: A review of algebraic multigrid. J. Comput. Appl. Math., 128:281–309, 2001.

(Stroud 1971)

A. H. Stroud: Approximate Calculation of Multiple Integrals. Prentice Hall, 1971.


Hang Si: TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator. See

Next: , Previous: , Up: Top   [Contents][Index]