Next: , Previous: , Up: Top   [Contents][Index]


Bibliography

(Bastian et al, 1997)

P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, C. Wieners: UG – A flexible software toolbox for solving partial differential equations. Comput. Visual. Sci 1, 1997, 27-40.

(Bey 2000)

J. Bey: Simplicial grid refinement: On Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85, 2000, pp. 1-29.

(CMUCL) CMUCL Homepage. http://www.cons.org/cmucl.
(deal.II)

deal.II Homepage. http://www.dealii.org.

(Dongarra 1998)

J. J. Dongarra: Performance of various computers using standard linear equations software. Technical report, Computer Science Department, University of Tennessee, 1998.

(Data Explorer)

Data Explorer Homepage. http://www.ibm.com/opendx.

(Demmel et al, 1999)

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu: A Supernodal Approach to Sparse Partial Pivoting, SIAM J. Matrix Anal. Appl. 20, 1999, pp. 720-755.

(Fateman)

R. Fateman: Software fault prevention by language choice: why C is not my favorite language. http://www.cs.berkeley.edu/~fateman/papers/software.pdf.

(Fateman et al, 1995)

R. Fateman, K. A. Broughan, D. K. Willcock, and D. Rettig: Fast floating-point processing with Common Lisp. ACM Trans. on Math. Software, 21:26–62, 1995.

(Femlisp)

Femlisp Homepage. http://www.femlisp.org.

(Graham 1993)

P. Graham: On Lisp. Prentice Hall, 1993.

(Graham 1996)

P. Graham: ANSI Common Lisp. Prentice Hall, 1996.

(Heisig-Neuss 2017)

M. Heisig, N. Neuss: Making a Common Lisp Finite Element library high-performing - a case study (submitted).

(Keene 1989)

S. E. Keene: Object-Oriented Programming in Common Lisp: A Programmer’s Guide to CLOS. Addison-Wesley, 1989.

(Kiczales et al, 1991)

G. Kiczales, J. Des Rivieres, and D. Bobrow: The Art of the Metaobject Protocol. MIT Press, 1991.

(Matlisp)

Matlisp Homepage. http://matlisp.sourceforge.net.

(Neuss 2002)

N. Neuss: On using Common Lisp in scientific computing. In Proceedings of the CISC 2002. Springer-Verlag, 2002.

(Norvig 1992)

P. Norvig Principles of Artificial Intelligence Programming. Morgan Kaufmann Publishers, Inc., San Francisco, USA, 1992.

(Quicklisp)

Quicklisp Homepage. http://www.quicklisp.org.

(Ruede 1993)

U. Ruede Mathematical and Computational Techniques for Multilevel Adaptive Methods. Frontiers in Applied Mathematics 13, SIAM, Philadelphia, 1993.

(Ruge and Stueben, 1987)

J. W. Ruge and K. Stueben: Algebraic multigrid (AMG). In S. F. McCormick, editor, Multigrid Methods, volume 3 of Frontiers in Applied Mathematics, pages 73–130. SIAM, Philadelphia, PA, 1987.

(SBCL)

SBCL Homepage. http://www.sbcl.org.

(Seibel 2005)

P. Seibel: Practical Common Lisp. Apress, 2005. Available online at http://www.gigamonkeys.com/book.

(Shewchuk 1997)

J. R. Shewchuk: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In Ming C. Lin Dinesh Manocha (eds): Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science 1148, Springer-Verlag, 1997, pp. 203-222.

(Stueben 2001)

K. Stueben: A review of algebraic multigrid. J. Comput. Appl. Math., 128:281–309, 2001.

(Stroud 1971)

A. H. Stroud: Approximate Calculation of Multiple Integrals. Prentice Hall, 1971.

(TetGen)

Hang Si: TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator. See http://wias-berlin.de/software/tetgen/.


Next: , Previous: , Up: Top   [Contents][Index]